Обмен веществ и энергии в клетке Печать
Автор naturalscience.ru   

Главным условием жизни как организма в целом, так и отдельной клетки является обмен веществ и энергии с окружающей средой. Для поддержания сложной динамической структуры живой клетки требуется непрерывная затрата энергии. Кроме того, энергия необходима и для осуществления большинства функций клетки (поглощение веществ, двигательные реакции, биосинтез жизненно важных соединений). Источником энергии в этих случаях служит расщепление органических веществ в клетке.

Энергетический обмен в клетке. Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах. Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО2 и Н2О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы. Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО2 и Н2О.
Клеточное дыхание - это окисление органических веществ, приводящее к получению химической энергии (АТФ). Большинство клеток использует в первую очередь углеводы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносхаридов: Крахмал, Глюкоза (у растений) Гликоген (у животных) . Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Однако в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например, при длительном голодании.


Этапы энергетического обмена: Единый процесс энергетического обмена можно условно разделить на три последовательных этапа:

Первый этап: - расщепление органических вещ-в в пищеварительной системе до промежуточных продуктов распада.(гидролиз).
Белки + Н2О=аминокислота + тепло(рассеивается )
Жиры + Н2О = глицерин + жирные кислоты + тепло
Полисахариды + Н2О = глюкоза + тепло

Второй этап: (в клетке, в цитоплазме) - гликолиз - без кислородное расщепление глюкозы.Глюкоза под воздействием ферментов расщипляется до двух молекул С3Н6О3 С свыделением энергии.60% этой энергии рассеивается в виде тепла, 40% в виде АТФ.

Третий этап: (кислородное расщепление в митохондриях ) На кислородном этапе: с внутренней стороны мембраны крист находятся молекулы переносчики . Электрон подхватывается молекулами переносчиками и перетаскивается с одной молекулы на другую (окисление), при этом он теряет энергию. Эта энергия на восстановление АТФ из АДФ. Этот процесс называется окислительное фосфорилирование. В конце цепи переносчиков стоит кислород он является акцептором . Анионы накапливаются с внутренней стороны мембраны , ионы с наружной стороны . Когда разность потенциалов между ними достигнет критического уровня ион через ферментативный канал проходит на внутреннею сторону мембраны. При этом выделяется энергия, она идет на фосфолирирование (АДФ-АТФ). В итоге на кислородном этапе образуется 36 АТФ.
Пластический обмен. Ассимиляция. По типу ассимиляции все клетки делятся на две группы - автотрофные и гетеротрофные. Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединений за счет СО2, воды и энергии света (фотосинтез) или энергии, выделившейся при окислении неорганических соединений (хемосинтез). К автотрофам принадлежат все зеленые растения и некоторые бактерии. Гетеротрофные клетки не способны синтезировать органические вещества из неорганических. Эти клетки для жизнедеятельности нуждаются в поступлении органических соединений: углеводов, белков, жиров. Гетеротрофами являются все животные, большая часть бактерий, грибы, некоторые высшие растения - сапрофиты и паразиты, а также клетки растений, не содержащие хлорофилл.
Фотосинтез - синтез органических соединений, идущий за счет энергии солнечного излучения.

СВЕТОВАЯ ФАЗА : Во время световой фазы энергия солнечного света (или энергия искусственных источников света) улавливается зелеными растениями и превращается в химическую энергию, заключенную в органических веществах, богатых энергией (богатых энергией АТФ, НАДФ и т.д.). В последующем энергия этих богатых энергией соединений используется в клетке для процессов биосинтеза, которые могут происходить как на свету, так и в темноте.
Во время световой фазы фотосинтеза кванты света поглощаются электроном в молекуле хлорофилла. В результате один из электронов приобретает большой запас энергии и покидает хлорофилл. Эта энергия используется для синтеза АТФ и восстановления НАДФ, что приводит к образованию восстановленного никотинамйдадениндинук-леотидфосфата НАДФ Н. Вместе с тем солнечный свет приводит к фотолизу воды - разложению воды на ион водорода Н+ и ион гидроксила ОН- . Одновременно с этим ион гидроксила отдает свой электрон е. хлорофиллу, а возникающие радикалы ОН образуют воду и кислород Образующийся таким образом кислород выделяется зелеными растениями, что в течение многих сотен миллионов лет привело к созданию кислородной атмосферы Земли. В настоящее время зеленые растения продолжают непрерывно обогащать кислородом атмосферу нашей планеты.

Темновая фаза :фотосинтеза связана с использованием макроэргических веществ (АТФ, НАДФ • Н и некоторых других) для синтеза различных органических соединений (главным образом углеводов).
Цель: синтез органических веществ ,в строме (в полости хлоропластов )
СО2 связывается с производными рибозы с образованием глюкозы : 6 СО2 +18АТФ+ 12НАДФ*Н= С6Н12О6.

Кроме фотосинтеза существует еще одна форма автотрофной ассимиляции - хемосинтез.